Geometric Pattern Matching in d -Dimensional Space

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric Pattern Matching in d-Dimensional Space

We show that, using the L 1 metric, the minimum Hausdor distance under translation between two point sets of cardinality n in d-dimensional space can be computed in time O(n (4d 2)=3 log 2 n) for 3 < d 8, and in time O(n 5d=4 log 2 n) for any d > 8. Thus we improve the previous time bound of O(n 2d 2 log 2 n) due to Chew and Kedem. For d = 3 we obtain a better result of O(n 3 log 2 n) time by e...

متن کامل

Geometric Pattern Matching in D-dimensional Space ? Alon Efrat

We show that, using the L1 metric, the minimum Hausdorr distance under translation between two point sets of cardinality n in d-dimensional space can be computed in time O(n (4d?2)=3 log 2 n) for d > 3. Thus we improve the previous time bound of O(n 2d?2 log 2 n) due to Chew and Kedem. For d = 3 we obtain a better result of O(n 3 log 2 n) time by exploiting the fact that the union of n axis-par...

متن کامل

Indexed Geometric Jumbled Pattern Matching

We consider how to preprocess n colored points in the plane such that later, given a multiset of colors, we can quickly find an axisaligned rectangle containing a subset of the points with exactly those colors, if one exists. We first give an index that uses o(n) space and o(n) query time when there are O(1) distinct colors. We then restrict our attention to the case in which there are only two...

متن کامل

Applying graphics hardware to achieve extremely fast geometric pattern matching in two and three dimensional transformation space

We present a GPU-based approach to geometric pattern matching. We reduce this problem to nding the depth (maximally covered point) of an arrangement of polytopes in transformation space and describe hardware assisted (GPU) algorithms, which exploit the available set of graphics operations to perform a fast rasterized depth computation.

متن کامل

Approximate Geometric Pattern Matching Under Rigid Motions

We present techniques for matching point-sets in two and three dimensions under rigid-body transformations. We prove bounds on the worst-case performance of these algorithms to be within a small constant factor of optimal, and conduct experiments to show that the average performance of these matching algorithms is often better than that predicted by the worst-case bounds.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete & Computational Geometry

سال: 1999

ISSN: 0179-5376

DOI: 10.1007/pl00009420